3.313 \(\int \frac{1}{x^4 (8 c-d x^3) \sqrt{c+d x^3}} \, dx\)

Optimal. Leaf size=81 \[ -\frac{\sqrt{c+d x^3}}{24 c^2 x^3}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{288 c^{5/2}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{32 c^{5/2}} \]

[Out]

-Sqrt[c + d*x^3]/(24*c^2*x^3) + (d*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(288*c^(5/2)) + (d*ArcTanh[Sqrt[c + d
*x^3]/Sqrt[c]])/(32*c^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0731036, antiderivative size = 81, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {446, 103, 156, 63, 208, 206} \[ -\frac{\sqrt{c+d x^3}}{24 c^2 x^3}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{288 c^{5/2}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{32 c^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(8*c - d*x^3)*Sqrt[c + d*x^3]),x]

[Out]

-Sqrt[c + d*x^3]/(24*c^2*x^3) + (d*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(288*c^(5/2)) + (d*ArcTanh[Sqrt[c + d
*x^3]/Sqrt[c]])/(32*c^(5/2))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^4 \left (8 c-d x^3\right ) \sqrt{c+d x^3}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{x^2 (8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )\\ &=-\frac{\sqrt{c+d x^3}}{24 c^2 x^3}-\frac{\operatorname{Subst}\left (\int \frac{3 c d-\frac{d^2 x}{2}}{x (8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{24 c^2}\\ &=-\frac{\sqrt{c+d x^3}}{24 c^2 x^3}-\frac{d \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^3\right )}{64 c^2}+\frac{d^2 \operatorname{Subst}\left (\int \frac{1}{(8 c-d x) \sqrt{c+d x}} \, dx,x,x^3\right )}{192 c^2}\\ &=-\frac{\sqrt{c+d x^3}}{24 c^2 x^3}-\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{32 c^2}+\frac{d \operatorname{Subst}\left (\int \frac{1}{9 c-x^2} \, dx,x,\sqrt{c+d x^3}\right )}{96 c^2}\\ &=-\frac{\sqrt{c+d x^3}}{24 c^2 x^3}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{288 c^{5/2}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{32 c^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.0296759, size = 81, normalized size = 1. \[ -\frac{\sqrt{c+d x^3}}{24 c^2 x^3}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{3 \sqrt{c}}\right )}{288 c^{5/2}}+\frac{d \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{32 c^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(8*c - d*x^3)*Sqrt[c + d*x^3]),x]

[Out]

-Sqrt[c + d*x^3]/(24*c^2*x^3) + (d*ArcTanh[Sqrt[c + d*x^3]/(3*Sqrt[c])])/(288*c^(5/2)) + (d*ArcTanh[Sqrt[c + d
*x^3]/Sqrt[c]])/(32*c^(5/2))

________________________________________________________________________________________

Maple [C]  time = 0.01, size = 477, normalized size = 5.9 \begin{align*}{\frac{-{\frac{i}{1728}}\sqrt{2}}{d{c}^{3}}\sum _{{\it \_alpha}={\it RootOf} \left ({{\it \_Z}}^{3}d-8\,c \right ) }{\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},-{\frac{1}{18\,cd} \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}}+{\frac{1}{8\,c} \left ( -{\frac{1}{3\,c{x}^{3}}\sqrt{d{x}^{3}+c}}+{\frac{d}{3}{\it Artanh} \left ({\sqrt{d{x}^{3}+c}{\frac{1}{\sqrt{c}}}} \right ){c}^{-{\frac{3}{2}}}} \right ) }-{\frac{d}{96}{\it Artanh} \left ({\sqrt{d{x}^{3}+c}{\frac{1}{\sqrt{c}}}} \right ){c}^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x)

[Out]

-1/1728*I/d/c^3*2^(1/2)*sum((-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2
*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+
1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*
3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/
2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),-1/18/d*(2*I*(-d
^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/c,
(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*
d-8*c))+1/8/c*(-1/3*(d*x^3+c)^(1/2)/c/x^3+1/3*d*arctanh((d*x^3+c)^(1/2)/c^(1/2))/c^(3/2))-1/96*d*arctanh((d*x^
3+c)^(1/2)/c^(1/2))/c^(5/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{1}{\sqrt{d x^{3} + c}{\left (d x^{3} - 8 \, c\right )} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

-integrate(1/(sqrt(d*x^3 + c)*(d*x^3 - 8*c)*x^4), x)

________________________________________________________________________________________

Fricas [A]  time = 1.37201, size = 462, normalized size = 5.7 \begin{align*} \left [\frac{\sqrt{c} d x^{3} \log \left (\frac{d x^{3} + 6 \, \sqrt{d x^{3} + c} \sqrt{c} + 10 \, c}{d x^{3} - 8 \, c}\right ) + 9 \, \sqrt{c} d x^{3} \log \left (\frac{d x^{3} + 2 \, \sqrt{d x^{3} + c} \sqrt{c} + 2 \, c}{x^{3}}\right ) - 24 \, \sqrt{d x^{3} + c} c}{576 \, c^{3} x^{3}}, -\frac{9 \, \sqrt{-c} d x^{3} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{c}\right ) + \sqrt{-c} d x^{3} \arctan \left (\frac{\sqrt{d x^{3} + c} \sqrt{-c}}{3 \, c}\right ) + 12 \, \sqrt{d x^{3} + c} c}{288 \, c^{3} x^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/576*(sqrt(c)*d*x^3*log((d*x^3 + 6*sqrt(d*x^3 + c)*sqrt(c) + 10*c)/(d*x^3 - 8*c)) + 9*sqrt(c)*d*x^3*log((d*x
^3 + 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3) - 24*sqrt(d*x^3 + c)*c)/(c^3*x^3), -1/288*(9*sqrt(-c)*d*x^3*arctan(
sqrt(d*x^3 + c)*sqrt(-c)/c) + sqrt(-c)*d*x^3*arctan(1/3*sqrt(d*x^3 + c)*sqrt(-c)/c) + 12*sqrt(d*x^3 + c)*c)/(c
^3*x^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} - \int \frac{1}{- 8 c x^{4} \sqrt{c + d x^{3}} + d x^{7} \sqrt{c + d x^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(-d*x**3+8*c)/(d*x**3+c)**(1/2),x)

[Out]

-Integral(1/(-8*c*x**4*sqrt(c + d*x**3) + d*x**7*sqrt(c + d*x**3)), x)

________________________________________________________________________________________

Giac [A]  time = 1.12406, size = 103, normalized size = 1.27 \begin{align*} -\frac{1}{288} \, d{\left (\frac{9 \, \arctan \left (\frac{\sqrt{d x^{3} + c}}{\sqrt{-c}}\right )}{\sqrt{-c} c^{2}} + \frac{\arctan \left (\frac{\sqrt{d x^{3} + c}}{3 \, \sqrt{-c}}\right )}{\sqrt{-c} c^{2}} + \frac{12 \, \sqrt{d x^{3} + c}}{c^{2} d x^{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(-d*x^3+8*c)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-1/288*d*(9*arctan(sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c^2) + arctan(1/3*sqrt(d*x^3 + c)/sqrt(-c))/(sqrt(-c)*c
^2) + 12*sqrt(d*x^3 + c)/(c^2*d*x^3))